Rules of Differentiation

1) The Constant Function Rule

Derivative of a constant is zero, f(x) = cy'= f'(x) = 0

2) The Power Function Rule

Derivative of an exponent, $f(x) = x_n$, is: $y' = f'(x) = nx^{n-1}$

3) Constant times a Function Rule

f(x) = c.g(x)

Derivative of a constant times a function is equal to the constant times the derivative of that function:

y'= f'(x) = c.g'(x)

4) The Sums of Functions Rule

Derivative of sums and differences of two functions $f(x) = g(x) \pm h(x)$, is: y'= $f'(x) = g'(x) \pm h'(x)$

5) **Product Rule**

Derivative of product of two functions f(x) = g(x).h(x), is: y'= f'(x) = g'(x).h(x) + g(x).h'(x)

6) Quotient Rule

The derivative of the ratio of two functions, f(x) = g(x) / h(x) is:

$$y' = f'(x) = \frac{g'(x)h(x) - h'(x)g(x)}{[h(x)]^2}$$

Where g(x) is a differentiable function

7) The Power of a Function Rule

The derivative of a function raised into the power of $n, f(x) = [g(x)]_n$ is: $y' = f'(x) = n[g(x)]^{n-1} g'(x)$ Where g(x) is a differentiable function

8) If, y = f(u) and u = g(x), where g(x) and f(x) are both differentiable functions, then the chain rule of derivatives can be applied as follows: $y' = \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ The Natural Exponential Function Rule

1)
$$f(x) = e^x$$
 $f'(x) = e^x$

 2) $f(x) = e^{g(x)}$
 $f'(x) = g'(x)e^{g(x)}$

 3) $f(x) = ke^{g(x)}$
 $f'(x) = kg'(x)e^{g(x)}$

 4) $f(x) = a^{g(x)}$
 $f'(x) = g'(x)a^{g(x)} \cdot \ln a^{g(x)}$

The Natural Logarithmic Function Rule

1)
$$f(x) = \ln x$$

2) $f(x) = \ln g(x)$
3) $f(x) = \log_a g(x) = \frac{\ln g(x)}{\ln a}$
 $f'(x) = \frac{g'(x)}{g(x)}$
 $f'(x) = \frac{g'(x)}{g(x) \ln a}$

Best wishes

Wessam Abouarghoub