Rules of Differentiation

1) The Constant Function Rule

Derivative of a constant is zero, $f(x)=c$
$y^{\prime}=f^{\prime}(x)=0$

2) The Power Function Rule

Derivative of an exponent, $f(x)=x_{n}$, is:
$y^{\prime}=f^{\prime}(x)=n x^{n-1}$
3) Constant times a Function Rule $f(x)=c . g(x)$
Derivative of a constant times a function is equal to the constant times the derivative of that function:
$y^{\prime}=f^{\prime}(x)=c . g^{\prime}(x)$
4) The Sums of Functions Rule

Derivative of sums and differences of two functions $f(x)=g(x) \pm h(x)$, is:
$y^{\prime}=f^{\prime}(x)=g^{\prime}(x) \pm h^{\prime}(x)$

5) Product Rule

Derivative of product of two functions $f(x)=g(x) \cdot h(x)$, is:
$y^{\prime}=f^{\prime}(x)=g^{\prime}(x) \cdot h(x)+g(x) \cdot h^{\prime}(x)$

6) Quotient Rule

The derivative of the ratio of two functions, $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x}) / \mathrm{h}(\mathrm{x})$ is:
$y^{\prime}=f^{\prime}(x)=\frac{g^{\prime}(x) h(x)-h^{\prime}(x) g(x)}{[h(x)]^{2}}$
Where $\mathrm{g}(\mathrm{x})$ is a differentiable function

7) The Power of a Function Rule

The derivative of a function raised into the power of $n, f(x)=[g(x)]_{n}$ is:
$y^{\prime}=f^{\prime}(x)=n[g(x)]^{n-1} g^{\prime}(x)$
Where $\mathrm{g}(\mathrm{x})$ is a differentiable function
8) If, $y=f(u)$ and $u=g(x)$, where $\mathrm{g}(\mathrm{x})$ and $\mathrm{f}(\mathrm{x})$ are both differentiable functions, then the chain rule of derivatives can be applied as follows:
$y^{\prime}=\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$

The Natural Exponential Function Rule

1) $f(x)=e^{x}$

$$
f^{\prime}(x)=e^{x}
$$

2) $f(x)=e^{g(x)}$

$$
f^{\prime}(x)=g^{\prime}(x) e^{g(x)}
$$

3) $f(x)=k e^{g(x)}$
$f^{\prime}(x)=k g^{\prime}(x) e^{g(x)}$
4) $f(x)=a^{g(x)}$
$f^{\prime}(x)=g^{\prime}(x) a^{g(x)} \cdot \ln a$
The Natural Logarithmic Function Rule
5) $f(x)=\ln x$
$f^{\prime}(x)=\frac{1}{x}$
6) $f(x)=\ln g(x)$

$$
f^{\prime}(x)=\frac{g^{\prime}(x)}{g(x)}
$$

3) $f(x)=\log _{a} g(x)=\frac{\ln g(x)}{\ln a} \quad f^{\prime}(x)=\frac{g^{\prime}(x)}{g(x) \ln a}$

Best wishes
Wessam Abouarghoub

